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report:

Under "Symbols" delete the last definition.
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appear in equation 1 and in the line following

the equation.
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deleted: "(water, in this case)."
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NOTATION

S;S

(Negative as Shown)

Nozl BoKK'erA

ZLevel of Liquid Surfaceot aPvO



SYMBOLS

at speed of sound in air (at - 1117 feet per second)

C perimeter of flap or skirt (taken at lowest point) in feet

C specific heat at constant pressure in Btu/pound-degree
P Fahrenheit

Cv  specific heat at constant volume in Btu/pound-degreeFahrenheit

Dc  discharge coefficient

h height of lowest point of flap or skirt to depressed liquid

surface in feet (h - k - k") - he + 2 for report data only

Ah amount of liquid surface depression in feet

h height of lowest point of flap or skirt from free liquide surface (when Ah = 0) in feet

J jet momentum force in pounds

k height of model base from depressed surface of liquid in

feet (k = k' + for test)
2

k' concr 4ty of model (vertical distance of model base to free
su of liquid when Ahm 0) in feet

k" .cal distance of model base to lowest point of flap or
.xrc in feet (k" = k' - h e)

P atmosphetic pressure (P f 14.7 pounds per square inch)

AP base pressure in pounds per square foot

P air supply reference pressure in pounds per square inch
u

Q rate of flow in cubic feet per second

r distance from edge of flap to water surface at minimum
escape area (see Figure 15)

S total planform area in square feet

S i  intake area in square feet

Se  escape area in square feet (Se 
= Ch)

V average escape velocity of air at point where S is measured,
in feet per second

V i  average airspeed at intake of model in feet per second

V average airspeed at flowmeter throat in feet per second

e angle of inclination of flap or skirt in degrees (see notation)

p density of air (p - 0.002378 slug per cubic foot)

P' density of water
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SUMMARY

A two-dimensional plenum-chamber GEM with a trailing-edge flap was

tested over a liquid surface. The discharge coefficient was determined

for the following parameters: ratio of intake to escape area, ratio of

planform area to intake area, hover height, planform loading, flap angle,

and distance from the trailing edge of the flap to the liquid.

INTRODUCTION

The present investigation was performed to determine the effects

of intake area, planform loading, hover height, and flap (or skirt) angle

upon the discharge coefficient of a two-dimensional plenum-chamber GEM.

The tests were conducted intermittently in the Aerodynamics Laboratory

at the Taylor Model Basin during September and October, 1960. This in-

vestigation was carried out in accordance with Reference 1.

MODEL AND TEST EQUIPMENT

Tne test equipment consisted of a narrow rectangular tank with trans-

parent sides. One end was enclosed with wood- the other was open to allow

air to flow freely through a vertical nozzle. For simulation of flight
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over a liquid surface, the open end required a barrier to retain the

water. A photograph of the test setup is shown in Figure 1.

The model used for representing the GEM consisted of a board with

a flap at one end and an inlet diffuser nozzle at the other end. The

flap setting could be varied over a wide range of angles, and the size

of the inlet was controlled by inserting different nozzle blocks. A

photograph of a typical nozzle is shown in Figure 2. Static pressure

orifices for determining pressures at the base of the model were located

along the length of the board.

CALIBRATION OF FLOWMETER

The calibration of the flowmeter was carried out by measuring the

jet force acting upon a modified chemical-type balance, for various

values of air supply pressure P . A photograph of the flowmeter is shownu

in Figure 3. The procedure for calibration was to discharge the air

through the flowmeter perpendicular to the balance plate. For values

of P from 10 to 90 psi, the force J on tU"e balance was recorded. TheU

height of the nozzle was that for which the balance would give the highest

reading.

The air volume rate of flow, Q, was calculated from the following

equation:

Q = J/pVj [1]

For several ratios of P/P (assuming P = 14.7 psi and the speed of

sound at = 1117 feet per second), corresponding ratios of V /a t were

found in the tables presented in Reference 2 (for C p/Cv = 1.4). For

practical purposes, the value of p in Equation [1] was assumed constant

at 0.002378 slug per cubic foot.

The calibration of the flowmeter, therefore, was in terms of rate

of flow for air-supply pressure.

TEST PROCEDURE

Data were obtained at selected ratios of inlet area to model base

area, various flap angle settings, ratios of h e/k', and pressure. The

tests were conducted in two phases.
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In the first phase (with no air flowing through the flowmeter)s

the free water surface was barely in contact with the trailing edge of

the flap; i.e., h was equal to 0. The values for the flap angle ee

were varied from -75' to 750 in 15' increments. Then values of Ah were

recorded for corresponding values of Pu . The static pressure orifices

were utilized to determine whether there was a static pressure gradient

along the length of the model and to check the accuracy in the measure-

ment of depth of depression of the water. In a sense, one might look at

the model and flow stand as a giant U-tube manometer. Because of the

geometry of the model and by definition of h e it was necessary to vary

the amount of water in the tank in order to maintain the height he

constant at 0. The same procedure was repeated for each of the inlet

nozzle blocks.

For the second phase, h was set at some value other than zero.e

This was done either by adding or evacuating water from the test stand.

The values of k' changed automatically with a change in 8, as shown in

the notation. The same procedure was repeated for each inlet condition.

RESULTS

The effect of the ratios Si/Sev h/k', Ah/h, he/k and e upon the

discharge coefficient D is presented in Figures 4 through 14. Thec

physical meaning of these quantities can be better understood after a

careful study of the test setup and the sketch in the notation.

The discharge coefficient D was computed from
c

Q
D = S [2]

where AP was obtained from the pressure head, Ah, and p' is the density

of the fluid (water, in this case).
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DISCUSSION

Because of the small size of the test stand and the crude nature

of the equipment which was used to obtain the results, the data should

be used for preliminary evaluation only. Further testing should be

done on a larger scale model, in order to substantiate the results

presented herein. For some conditions during the tests it was impossible

to obtain data points at the higher values of mass flow, because of a

undamped wave-producing oscillation. In some instances (high Ah), the

re-enforcement of the oscillation was sufficient to practically evacuate

the water from the tank.

A careful study of the data will show that for constant values of

k' (with e constant), if h increases (because of an increase in Ah), the

discharge coefficient is decreased. That is, as the planform loading

increases, the discharge coefficient decreases. This effect depends on

the nature of the flow at the flap trailing edge. To obtain true values

of the discharge coefficients for plenun GEM with a flap or skirt, the

exhaust area should be computed from

S - Cr [3]e

as shown in Figure 15.

For the test results presented in this report, h was used instead

of r, since it was impossible to determine the value of r with sufficient

accuracy on a model of such small scale. The value of h was computed

from h = h + . This was done to simplify testing, since the average
e

position of the flap trailing edge was approximately at the center of the

test stand. A slight error die to a small variation in total planform

area S occurred for high negative or positive values of 9. Also, blocking

of the escape area occurs at high values of planform loading (high value

of Ah), because of spillage from the wave generated by the air as it

leaves the trailing edge of the flap. For this same configuration, spray

is generated by the escaping air travelling in a path tangential to the

liquid surface. The amount of spray decreases directly with decrease

in Ah, and the nature of the spray was found to vary with e. This can
be readily understood from the sketches in Figure 15. The escaping air
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at the trailing edge of the flap is forced to travel through a curved

path. The dynamic pressure of the escaping air creates a drop in static

pressure (below atmospheric) on the flap surface. Equilibrium is main-

tained by the wave rise spilling slightly over and toward the flap.

As the water spills over, the escaping air pushes against it, generating

spray. This situation will be encountered in any GEM when hovering

over a liquid surface. For a GEM cruising above "hump speed," the spray

will not be generated as in hovering, since Ah = 0. The amount of lift

created in hovering will be equal to the weight of the volume of liquid

displaced.

CONCLUSIONS

The results indicate that the discharge coefficient is a function

of intake area, flap angle, and planform loading.

The values for discharge coefficients were found to vary considerably

with planform loading. Discharge coefficient values should be considered

only approximate, because of model size. These results do show a quali-

tative behavior of a plenum chamber GEM in the over-liquid hovering

condition. Further tests, with a larger model, should be carried out to

determine the exact contributions of each of the above-mentioned param-

eters to the discharge coefficients.

Aerodynamics Laboratory
David Taylor Model Basin
Washington, D. C.
May 1963
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Figure 2 -Photograph of a Typical Intake Nozzle Block

PSD-304,977 September 11, 1961
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